Зарегистрироваться
Восстановить пароль
FAQ по входу

Johnson M.S. Marginal Maximum Likelihood Estimation of Item Response Models in R + Code

  • Файл формата rar
  • размером 368,39 КБ
  • содержит документы форматов archive pdf
  • Добавлен пользователем
  • Описание отредактировано
Johnson M.S. Marginal Maximum Likelihood Estimation of Item Response Models in R + Code
Item response theory (IRT) models are a class of statistical models used by researchers to describe the response behaviors of individuals to a set of categorically scored items. The most common IRT models can be classified as generalized linear fixed- and/or mixed-effect models. Although IRT models appear most often in the psychological testing literature, researchers in other fields have successfully utilized IRT-like models in a wide variety of applications. This paper discusses the three major methods of estimation in IRT and develops R functions utilizing the built-in capabilities of the R environment to find the marginal maximum likelihood estimates of the generalized partial credit model. The currently available R packages ltm is also discussed.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация