There are many books on regression and analysis of variance. These books expect different levels of preparedness and place different emphases on the material. This book is not introductory. It presumes some knowledge of basic statistical theory and practice. Students are expected to know the essentials of statistical inference like estimation, hypothesis testing and confidence intervals. A basic knowledge of data analysis is presumed. Some linear algebra and calculus is also required. The emphasis of this text is on the practice of regression and analysis of variance. The objective is to learn what methods are available and more importantly, when they should be applied. Many examples are presented to clarify the use of the techniques and to demonstrate what conclusions can be made. There is relatively less emphasis on mathematical theory, partly because some prior knowledge is assumed and partly because the issues are better tackled elsewhere. Theory is important because it guides the approach we take. I take a wider view of statistical theory. It is not just the formal theorems. Qualitative statistical concepts are just as important in Statistics because these enable us to actually do it rather than just talk about it. These qualitative principles are harder to learn because they are difficult to state precisely but they guide the successful experienced Statistician. Смотрите также здесь: http://www.mzandee.net/~zandee/statistiek/Rweb/resources.html
Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
Springer, 2009. — 262 p. — ISBN 978-0-387-88697-8 This book gives you a step-by-step introduction to analysing time series using the open source software R. Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence confirms understanding of both the model and the R...
Second Edition. — Springer, 2008. — (501 + 305) p. — ISBN 0387759586. The book was developed for a one-semester course usually attended by students in statistics, economics, business, engineering, and quantitative social sciences. Basic applied statistics through multiple linear regression is assumed. Calculus is assumed only to the extent of minimizing sums of squares, but a...
2nd ed. — CRC Press, 2014. — 284 p. — ISBN: 1439887330, 9781439887332.
Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear...
Publisher: Springer | ISBN: 1461421330 | 2011 | 149 pages |
In statistics, analysis of variance (ANOVA) is a collection of statistical models used to distinguish between an observed variance in a particular variable and its component parts. In its simplest form, ANOVA provides a statistical test of whether or not the means of several groups are all equal, and therefore...
Springer, 2008. — 260 p. — ISBN 0387759603. Wavelet methods have recently undergone a rapid period of development with important implications for a number of disciplines including statistics. This book has three main objectives: (i) providing an introduction to wavelets and their uses in statistics; (ii) acting as a quick and broad reference to many developments in the area;...
2nd ed. — Springer, 2008. — 189 p. ISBN: 0387759662. Analysis of Integrated and Cointegrated Time Series with R (2nd Edition) by Bernhard Pfaff offers a rigorous introduction to unit roots and cointegration, along with numerous examples in R to illustrate the various methods. The book, now in its second edition, provides an overview of this active area of research in time...